SELECTIVE ETCHING OF FUSED SILICA WITH LOW PRESSURE GASEOUS HYDROFLUORIDRIC ACID

Y. Venturelli Francesco(1), Navarrini Walter(1), Roberto Osellame(1), Giulio Cerullo(1), Pierangelo Metrangolo(2), Resnati Giuseppe(1)
(1) DMCIC, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
(2) ULTRAS-INFM-CNRS, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

Three dimensional laser irradiation

Selective etching

1) $\text{SiO}_2 \text{(bulk)} + 4 \text{HF} \rightarrow \text{SiF}_4 + 2 \text{H}_2\text{O}$

2) $\text{SiO}_2 \text{(irradiated)} + 4 \text{HF} \rightarrow \text{SiF}_4 + 2 \text{H}_2\text{O}$

$v_2 \gg v_1$

We report on the fabrication of microfluidic devices using a novel technique based on high-energy femtosecond laser irradiation followed by selective removal of the irradiated region by gaseous chemical etching.

The microfluidic channels in commercial biochips are currently fabricated using intrinsically two-dimensional techniques borrowed from semiconductor processing thus creating surface channels that need to be covered by a glass slab so that later processing is required to produce three-dimensional structures.

Recently, femtosecond laser assisted micro machining has emerged as a revolutionary technique for three-dimensional microchannel fabrication in glass. The procedure attested in literature consists of laser irradiation of the silica sample followed by chemical etching using an aqueous solution of hydrofluoric acid (HF).

The main constraints that currently affect the aqueous hydrofluoric acid etching procedure are the minimal length and the low aspect ratio of the obtainable micro channels utilizing this procedure. The above limitations are mainly due to diffusion constraints of the etching reactants and products respectively in and out of the growing channel. To overcome the diffusion limits and consequently realize longer microchannels with high aspect ratio, we have investigated the use of low pressure gaseous anhydrous hydrofluoridric acid (AHF) as etching agent, as well as the dynamic use of inert dilution gas.

![Image of a laser setup and microfluidic channels](image-url)