

PERFLUOROPOLYETHERS AS HYDROPHOBIZING AGENTS FOR FUEL CELLS CARBONACEOUS FUNCTIONAL MATERIALS

M. Gola^a, M. Sansotera^a, W. Navarrini^a, G. Dotelli^a, P. Gallo Stampino^a, S. Latorrata^a, C. L. Bianchi^b

^aDipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, 7, via Mancinelli, 20131, Milano, Italia ^bDipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, 19, Via Golgi, 20133, Milano, Italia

Perfluoropolyether peroxide (PFPE peroxide)

 $-\mathbf{T} - \mathbf{O} \left(\mathbf{CF}_{\mathbf{2}} \mathbf{CF}_{\mathbf{2}} \mathbf{O} \right)_{m} \left(\mathbf{CF}_{\mathbf{2}} \mathbf{O} \right)_{n} \left(\mathbf{O} \right)_{V} \mathbf{T}'$

AMW 39000; *m*/*n* 1.15; v~43

T, T' = CF_3 , C-O-F, CF_2 -C-O-F

(linked PFPE) $(\operatorname{CF}_{2}\operatorname{CF}_{2}\operatorname{O})_{m}(\operatorname{CF}_{2}\operatorname{O})_{n}]T + V \operatorname{OCF}_{2} + \operatorname{H}\operatorname{O}(\operatorname{CF}_{2}\operatorname{CF}_{2}\operatorname{O})_{m}(\operatorname{CF}_{2}\operatorname{O})_{n}T$

$$HO^{-}CF_{2}CF_{2}O^{-}R_{F} \xrightarrow{-HF} \xrightarrow{0} C^{-}CF_{2}O^{-}R_{F}$$

F

Linked perfluoropolyether

Navarrini, Sansotera, Gola, Bianchi, Wormald, Famulari, Avataneo, J. Fuorine Chem., 2011, 132, 12, 1254-1261

The thermal decomposition of a linear perfluoropolyether peroxide produces perfluoropolyether radicals that link to the unsaturated moieties of carbonaceous materials. The decomposition occurs between 110-200 C and generates radical species with half-life time of 30 mins.

Thereafter, the sample was dipped in a 2% solution of PFPE peroxide and, then, treated between 110-200 C under nitrogen in order to obtain a uniform hydrophobization of the carbon cloth. $10\%_{wt}$ PFPE was linked to the carbon black for MPL and $1\%_{wt}$ PFPE was linked to the carbon cloth backing layer.

The PFPE GDL was tested in a Polymeric Electrolyte Membrane Fuel Cell (PEMFC) and

the results were compared to a standard PTFE-hydrophobized GDL (10%_{wt} PTFE).

Active area: 25 cm² Catalyst Coated Membrane: Nafion® 212 Temperatures: 60 C-80 C R.H: 80%-100%; 80%-60% (Anode-Cathode) Pt loading: 0.3-0.6 mg/cm² (Anode-Cathode) Constant flow rate: Air: 1 NL/min Hydrogen: 0.2 NL/min

Navarrini, Sansotera, Gola, Dotelli, Gallo Stampino, Bianchi, Int. J. Hydrogen Energy, 2012, 37, 7, 6277-6284

Conclusions

PFPE chains were covalently linked to carbon black and carbon cloth in order to obtain supehhydropobic carbonaceous functional materials. The PFPE-modified carbon-based materials were tested as a Gas Diffusion Layers (GDL) in a PEMFC. Polarization curves showed that PFPE-functionalized materials provided better performances than standard PTFE-hydrophobized ones, especially at high current densities.